

Technology matters:

An experimental exploration on how the spatial cues afforded by different audio playback devices shape the perceived emotional expression of mediatized music

Steffen Lepa¹
Hans-Joachim Maempel²
Elena Ungeheuer³
Stefan Weinzierl¹

¹Audio Communication Group, Technische Universität Berlin, Germany ²Department III for Acoustics, Music Technology & IT, SIMPK Berlin, Germany ³Institute for Music Research, Julius-Maximilians-Universität Würzburg, Germany

INTRODUCTION

Main Research Question

- "Everyday music listening" basically means mediatized music listening
 - Different listening spaces
 Different storage/carrier technologies
 Different playback devices
 - Different emitter systems
- Result: Complex alterations in morphology of ambient sound field
 - predictable according to physical laws
 - measurable and simulatable
 - noticeable and recognizable
- If "perceived emotional expression of music" is a result of situational affective/cognitive processing of "moving sonic forms" (Hanslick 1854) ...
- ... playback technology employed should alter it significantly!

Theoretical Arguments & Further Specification

- Arguments for acoustics-related "technology effects" on emotional expression:
 - Alteration of original expressive "acoustic cues" (Juslin 2000)
 - Introduction of additional expressive "media cues" (e.g. "grammophone nostalgia")

Counterarguments:

- Alterations in morphology too minor to be relevant
- Emotional expression mainly a function of music's symbolic meaning
- Technology effects foremost due to non-acoustic aspects of technology (quality expectations, style/fashion, mobility, comfort, socialness, cocooning, ...)

Research Strategy in present paper:

- Test single audio technology factor relevant for everyday listening: spatialization type
- Compare to well-known non-acoustic technology factor: quality expectation

Research hypothesis:

Spatialization Type & Quality Expectation (related to playback technology) both <u>independently</u> alter the perceived emotional expression of music

Music Spatialization & Dynamic Binaural Synthesis

"Headphone Stereo" (ITD, ILD, monaural spatial cues)

"Stereo Speakers in Living Room" (+ motion cues)

"Live Performance / Concert" (+ motion cues & ,spatial detail')

METHODS

Experimental Design

• 3 x 2 Between-Subjects-Design with Repeated Measurements (4), SEM-Analysis:

Factors: Spatialization Type (3) x Quality Expectation (2)

Covariates: Age, Sex, Education, Mood-State (PANAS), Mood Trait (NFA)

Dependents: Perceived Emotional Expression (4 latent factors) – repeated (4x)

Perceived Audio Quality (3 latent factors) – once at end

- **Sample:** 306 self-recruited laymen from Berlin (syst. stratified for sociodemographics)
- Musical Stimuli (quasi-anechoic single track audio recordings):
 - Paul Gautier Quartet: "Contredanse" (4:26m) Vibrant Latin Jazz Tune
 - 2. Nick Drake: "River Man" (4:23m) Sad Pop Song
 - 3. Richard Strauss / Vienna Philh.: "Annen Polka" (4:31m) Happy Classical Piece
 - 4. Gustav Mahler / Vienna Philh.: "10th Symphony, 1st Movement" (7:42m) Dramatic Classical Piece

Treatment Realization:

- Spatialization Type: Binaurally simulated (mixed by prof. audio engineers)
 ("Stereo-Headphones", "Stereo-Unit-in-Living-Room", "Performance-in-Concert-Hall")
- Quality Expectation: By additional instruction of investigator
 ("you will listen to the music with a very new high fidelity spatial technology, pay attention!")

Measurement 1: Perceived Emotional Expression

- 15 items administered after listening to each musical piece, as 5-point likert scale: "Please rate how intense you felt that the music <u>expressed</u> the following emotions!"
- Own (German) instrument with assumed latent 4-factor structure:
 - Factor 1: "Happiness & Joy":
 - pleasure
 - solemnity
 - humor
 - Factor 2: "Love & Desire":
 - love
 - tenderness
 - hope
 - desire

- Factor 3: "Sadness & Pain ":
 - sadness
 - disappointment
 - regret
 - pain
- Factor 4: "Anger & Tension":
 - anger
 - outrage
 - irritation
 - tension

Meant to represent the 4 quadrants of the emotional circumplex (Russel 1980)

Measurement 2: Perceived Audio Quality

- 7 items administered at end of experiment as 9-point semantic differentials: "Please rate how you perceived the overall audio quality!"
- Own (German) instrument with assumed latent 3-factor structure:
 - Factor 1: "Transparency":
 - blurry precise
 - artificial natural
 - Factor 2: "Sonority":
 - thin full
 - cold warm
 - Factor 3: "Spatiality":
 - narrow wide
 - non-spatial spatial
- Employed as "treatment check":
 - Are differences in spatialization perceived at all?
 - Are differences perceived in the spatial realm <u>only</u>?

RESULTS

Audio Quality: Measurement Results

Confirmatory Factor Analysis

MLR-Estimation Mplus 6.12 n=304 missing values imputed X²= 9.309 df=6 p=0.16 RMSEA<.043 (.00-.09) SRMR= 0.018 CFI = 0.992

All paths p<.05

Audio Quality: Structural Results

Emotional Expression: Measurement Results

Emotional Expression: Structural Results Level 1

Stimulus	Expression Factor	Mean (z-score)
Contredanse	Happiness	0.000
	Love	0.000
	Sadness	0.000
	Anger	0.000
River Man	Happiness	-1.882
	Love	0.699
	Sadness	1.793
	Anger	-0.054
Annen Polka	Happiness	0.766
	Love	0.258
	Sadness	-0.100
	Anger	-0.142
Mahler 10th	Happiness	-1.711
	Love	0.549
	Sadness	2.128
	Anger	0.661

Felt Emotional Expression of Music

(estimated means by stimulus)

repeated measurement MANOVA: comparison of factor means across musical pieces (p < .05 significant differences in bold type)

Emotional Expression: Structural Results Level 2

DISCUSSION

Measurement Models & Instrumental Effects

Measurement Models

- Measurement models exhibit good fit indices
- Constructs exhibit good reliability & variance extraction
- Substantial amount of expression item variance attributable to technology effects

Stimulus Effects

stimuli able to induce very contrastive feelings of musical expression

Expectancy Effects

- manipulation able to substantially increase (ceiling-effect!) audio quality ratings
 → audio quality impression sensitive to technology related quality expectations
- Increases independent of treatment and apply to felt *spatial* audio quality <u>only</u>
 → instructional manipulation worked the way intended
- manipulation <u>not</u> able to produce changes in felt musical expression
 → felt musical expression <u>not</u> sensitive to technology related quality expectation

Spatialization Technology Effects

- Effects of technological spatialization on audio quality ratings
 - influenced spatial audio quality ratings <u>only</u>
 → no confounding of spatialization with overall sound impression
 - No differences between "stereo unit" and "live performance" condition
 motion cues more important than 'spatial detail' for quality impression
- Effects of technological spatialization on felt musical expression
 - Treatment influenced nearly all dimensions of felt musical expression
 → motion cues increase felt musical expression almost regardless of emotion type
 - No real differences between "stereo unit" and "live performance" condition
 → motion cues more important than 'spatial detail' for felt musical expression

Overall Conclusions:

- → Media technology matters! (at least in terms of spatialization)
- → Results seem to enforce "additional media cues hypothesis"
- \rightarrow Immersion in everyday listening seems to rely more on sensorimotor inclusion of the subject than on 'spatial detail' (\rightarrow presence/embodiment debate)

Outlook: Further Analyses & Future Research

Further Analyses (conducted right now):

- Do spatialization effects also apply to "felt musical emotions"?
 → German adaptation of GEMS (Zentner et al. 2008) as dependent
- Do spatialization effects also apply to ANS-activity?
 → Analysis of changes in SCR, BVP, skin temperature
- Do spatialization effects interact with media habits or genre preferences?
 → Expand model by respective interaction terms

Future research:

- Further potential technological mediators beyond spatialization?
 → Bass-Level, Compression, Equalizer-Presets, Loudspeaker/Headphone-Types
- Getting out of the laboratory (ESM-Study on technological mediation)

Thank you for your patience!

steffen.lepa@tu-berlin.de